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1 Master equation

The probability density function p(x, t) of observing the protein at concentration
x at time t satisfies the master equation

∂p(x, t)

∂t
− ∂

∂x
(c(x)p(x, t)) =

∫ x

0

(
b−1e−(x−x

′)/b − δ(x− x′)
)
a(x′)p(x′, t)dx′,

(1)
where the dependences on the total protein level x of the decay rate c(x) and
burst rate a(x) are given by

a(x) = a0 +
a1xf
kp + xf

, c(x) = γfxf +
γbyxf
xf + kb

, (2)

in which

xf =
x− y − kb +

√
(kb + y − x)2 + 4kbx

2
(3)

gives the free protein level xf as a function of the total protein level x, cf. Section
2 in the Main Text.

The stationary solution to (1) has been determined, using the Laplace trans-
formation of the equation, for linear degradation rate (Friedman et al., 2006)
and for a generic non-linear rate c(x) (Mackey et al., 2013). For reader’s con-
venience, we re-derive these results using a different method. Following that,
the generic formula needs to be algebraically simplified to obtain a closed-form
expression for the stationary distribution with our specific choices of a(x) and
c(x) in mind.

Equation (1) can be written down in the form of

∂p

∂t
+
∂J

∂x
= 0, (4)
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where the probability flux term is given by

J = −c(x)p(x, t) +

∫ x

0

e−(x−x
′)/ba(x′)p(x′, t)dx′. (5)

For the stationary solution p(x, t) = p(x) both the flux J and its derivative
dJ/dx must vanish, so that

c(x)p(x) =

∫ x

0

e−(x−x
′)/ba(x′)p(x′)dx′, (6)

d

dx
(c(x)p(x)) = a(x)p(x)− 1

b

∫ x

0

e−(x−x
′)/ba(x′)p(x′)dx′. (7)

Dividing (6) by b and adding the resulting equation to (7) yields

d

dx
(c(x)p(x)) +

c(x)p(x)

b
= a(x)p(x), (8)

from which

p(x) =
κ

c(x)
exp

(
−x
b

+

∫
a(x)

c(x)
dx

)
, (9)

where κ is a normalisation constant; such a form has been disclosed in previous
studies (Friedman et al., 2006; Mackey et al., 2013).

The convergence, as time t increases, of time-dependent solutions to the
master equation (1) to the stationary distribution (9), in the L1 sense, has been
established in Mackey et al. (2013) under mild conditions on the functional form
of a(x) and c(x). Specifically, Mackey et al. (2013) require∫ δ

0

dx

c(x)
=∞,

∫ δ

0

a(x)

c(x)
dx =∞, (10)

for a small δ > 0, of which the former guarantees that the deterministic decay
process does not lead to a (macroscopic) extinction, while the latter ensures
that the waiting time for the next burst be finite. For our choices of a(x) and
c(x), conditions (10) hold, since a(x) is bound from below by a0 > 0 and c(x)
is asymptotically linear for x small. In addition to (10), Mackey et al. (2013)
require that the integral of (9) is finite and also that the mean decay rate∫∞
0
c(x)p(x)dx be finite, both of which hold too for our choices of a(x) and c(x)

due to asymptotic linearity of c(x) for x very small or very large and also owing
to boundedness of a(x) from below as well as above, by positive constants.

2 Explicit steady-state solution

In this section we simplify the general formula (9) for stationary distribution,
making use of the specific properties of our choices for the transcription and
decay rates (2). We assume that time is measured in the units of free protein
lifetime, i.e. that γf = 1.

By (2), we find that

a(x)

c(x)
=

(
a0
xf

+
a1

kp + xf

)
xf + kb

xf + kb + γby
. (11)
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Therefore, the integral in the exponential of (9) simplifies to∫
a(x)

c(x)
dx =

∫
a(x)

c(x)

dx

dxf
dxf =

∫ (
a0
xf

+
a1

kp + xf

)
xf + kb + ykb

xf+kb

xf + kb + γby
dxf

= q1lnxf + q2ln(xf + kp) + q3ln(xf + kb) + q4ln(xf + kb + γby),
(12)

where dx/dxf is determined by differentiating

x = xf +
yxf

xf + kb
, (13)

which expresses the total protein level x in terms of the free protein level xf ,
cf. Section 2 in the Main Text. The integration of the rational fraction in (12)
is done by partial fraction decomposition using software capable of symbolic
calculation, and the coefficients multiplying the individual partial fractions are

q1 = a0
kb + y

kb + γby
, (14)

q2 =
a1(kp − kb)

kp − kb − γby

(
1 +

ykb
(kp − kb)2

)
, (15)

q3 =
1

γb

(
a1kb
kp − kb

− a0
)
, (16)

q4 =

(
γby +

kb
γb

)(
a0

kb + γby
− a1
kp − kb − γby

)
. (17)

Substituting (12) into (9), we find that the total protein concentration x is given
by the closed expression

p(x) = κ exp
(
−x
b

)
xq1−1f (xf + kp)q2(xf + kb)q3+1(xf + kb + γby)q4−1, (18)

in which xf is understood to be a function of x, as given by expression (3). The
formula (18) is valid as long as some special cases, namely that of kp = kb, or
kp = kb + γby, or γby = 0, are avoided; should however any of these occur, the
above integration procedure can easily be modified accordingly to obtain a valid
result, as detailed below.

2.1 Special case γb = 0

In this case, we have∫
a(x)

c(x)
dx =

∫
a(x)

c(x)

dx

dxf
dxf =

∫ (
a0
xf

+
a1

kp + xf

)(
1 +

ykb
(xf + kb)2

)
dxf

= q1ln(xf) + q2ln(xf + kp) + q3ln(xf + kb) + q4
y

xf + kb
, (19)
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where

q1 = a0

(
1 +

y

kb

)
, (20)

q2 = a1

(
1 +

ykb
(kb − kp)2

)
, (21)

q3 = − y

kb

(
a0 +

a1k
2
b

(kb − kp)2

)
, (22)

q4 = a0 −
a1kb
kp − kb

. (23)

Substituting (19) into (9), we arrive at

p(x) = κexp

(
−x
b

+ q4
y

xf + kb

)
xq1−1f (xf + kp)q2(xf + kb)q3 , (24)

where κ is the normalisation constant.

2.2 Special case y = 0

If y = 0, then (13) implies that x = xf , and hence∫
a(x)

c(x)
dx =

∫
a0
x

+
a1

x+ kp
dx = a0ln(x) + a1ln(x+ kp). (25)

Substituting (25) into (9), we find

p(x) = κe−x/bxa0−1(x+ kp)a1 , (26)

where κ is the normalisation constant. This result can also be found in previous
studies (Friedman et al., 2006; Mackey et al., 2013), which consider the model
for burst-like gene expression in the absence of decoy binding sites.

2.3 Special case kp = kb

Here∫
a(x)

c(x)
dx =

∫
a(x)

c(x)

dx

dxf
dxf =

∫ (
a0
xf

+
a1

kb + xf

)
xf + kb + ykb

xf+kb

xf + kb + γby
dxf

= q1lnxf + q2ln(xf + kb) + q3ln(xf + kb + γby)− a1kb
γb(kb + xf)

, (27)

where

q1 = a0
kb + y

kb + γby
, (28)

q2 = − 1

γb

(
a0 +

a1kb
γby

)
, (29)

q3 =

(
γby +

kb
γb

)(
a1
γby

+
a0

kb + γby

)
. (30)

Substituting (27) into (9), we find

p(x) = κexp

(
−x
b
− a1kb
γb(kb + xf)

)
xq1−1f (xf + kb)q2+1(xf + kb + γby)q3−1, (31)

where κ is the normalisation constant.
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2.4 Special case kp = kb + γby

Here∫
a(x)

c(x)
dx =

∫
a(x)

c(x)

dx

dxf
dxf =

∫ (
a0
xf

+
a1

kb + γby + xf

)
xf + kb + ykb

xf+kb

xf + kb + γby
dxf

= q1lnxf + q2ln(xf + kb) + q3ln(xf + kp) +
q4

kb + γby + xf
, (32)

where

q1 =
a0(kb + y)

kb + γby
, (33)

q2 =
1

γb

(
a1kb
γby

− a0
)
, (34)

q3 = a1

(
1− kb

γ2by

)
+
a0γby

kp

(
1 +

kb
γ2by

)
, (35)

q4 = a1

(
γby +

kb
γb

)
. (36)

Substituting (32) into (9), we find

p(x) = κ exp

(
−x
b

+
q4

kb + γby + xf

)
xq1−1f (xf + kb)q2+1(xf + kb + γby)q3−1,

(37)
where κ is the normalisation constant.

2.5 Special case kp = kb and γb = 0

Here∫
a(x)

c(x)
dx =

∫
a(x)

c(x)

dx

dxf
dxf =

∫ (
a0
xf

+
a1

xf + kb

)(
1 +

ykb
(xf + kb)2

)
dxf

= q1ln(xf) + q2ln(xf + kb) +
q3

xf + kb
+

q4
(xf + kb)2

, (38)

where

q1 = a0

(
1 +

y

kb

)
, q2 = a1 −

a0y

kb
, q3 = a0y, q4 = −a1kby

2
. (39)

Substituting (38) into (9), we find

p(x) = κexp

(
−x
b

+
q3

xf + kb
+

q4
(xf + kb)2

)
xq1−1f (xf + kb)q2 , (40)

where κ is the normalisation constant.
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